
岐阜工業高等専門学校

第 10回課題

電子制御工学科: 情報処理Ｉ

担当教員：岡崎憲一

柴田健琉

(学籍番号：2024D14　名列番号：15)

提出日：令和 7年 06月 24日

令和 7年 06月 19日

Made with LATEX + vim



柴田健琉 第 10回課題 −目次 情報処理Ｉ

目次

1 はじめに・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 1

1.1 実行環境・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 1

2 今回の構文 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 1

2.1 switch文・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 1

3 演習 3-12 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 3

3.1 コードリスティング ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 3

3.2 実行結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 3

4 演習 3-13 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 4

4.1 コードリスティング ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 4

4.2 実行結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 5

5 簡易電卓・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 6

5.1 コードリスティング ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 6

5.2 実行結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 7

A 付録・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 9

A.1 Deep Dive - ifと switchの根本的な違い ・・・・・・・・・・・・・・・・・・・・・・・ 9

参考文献・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 15

Made With LATEX + vim i



柴田健琉 第 10回課題 − 2 今回の構文 情報処理Ｉ

1 はじめに

1.1 実行環境

この課題のプログラムは以下の環境で動作することが確認されている：

• OS: Arch Linux

• CPUアーキテクチャ: x86_64

• Cコンパイラ: gcc バージョン 14.2.1 20250322 (GCC)

• Cコンパイラオプション: -Wall

2 今回の構文

2.1 switch文

switch 文は if 文と同じように条件分岐を行う文である。if 文と違い、論理式・論理値によ

る分岐ではなく、評価後の整数値によって分岐する。それぞれの条件は case ラベルで記載さ

れ、コロン (:) の後に処理を記述する。処理の終わりは break 文を書く。ケースは縦落ちする

ことができ、break 文を書かずにしておくことで複数の値に同じ処理を割り当てることができ

る。if文における最後の elseは switch文では defaultラベルとなっている。[2]

switch文

1 switch (式) {

2 case <値1>:

3 <処理>... // 値1の場合の処理

4 break;

5 case <値2>:

6 <処理>... // 値1の場合の処理

7 break;

8 default:

9 <処理>... // それ以外の場合の処理

10 }

縦落ち (Fall-through)する switch文

1 switch (式) {

2 case <値1>:

3 <処理>... // 値1の場合の処理

4 break;

Made With LATEX + vim 1



柴田健琉 第 10回課題 − 2 今回の構文 情報処理Ｉ

5 case <値2>:

6 case <値3>:

7 <処理>... // 値2と値3の場合の処理

8 break;

9 case <値4>:

10 <処理>... // 値4の場合の処理

11 break;

12 default:

13 <処理>... // それ以外の場合の処理

14 }

Made With LATEX + vim 2



柴田健琉 第 10回課題 − 3 演習 3-12 情報処理Ｉ

3 演習 3-12

教科書の List 3-4を Switch文で書き換えたプログラム。

3.1 コードリスティング

演習 3-12

1 #include <stdio.h>

2

3 int main(void) {

4 int n;

5

6 printf("Input Integer: ");

7 scanf("%d", &n);

8

9 switch (n % 2) {

10 case 0:

11 puts("The number is even.");

12 break;

13 case 1:

14 puts("The number is odd.");

15 break;

16 default:

17 puts("Unknown Error");

18 }

19

20 return 0;

21 }

3.2 実行結果

Made With LATEX + vim 3



柴田健琉 第 10回課題 − 4 演習 3-13 情報処理Ｉ

4 演習 3-13

教科書の List 3-18を Switch文で書き換えたプログラム。

4.1 コードリスティング

演習 3-13

1 #include <stdio.h>

2

3 int main(void) {

4 int month;

5

6 printf("月を入力してください: ");

7 scanf("%d", &month);

8

9 switch (month) {

10 case 12:

11 case 1:

12 case 2:

13 printf("%d月は冬です。\n", month);

14 break;

15 case 3:

16 case 4:

17 case 5:

18 printf("%d月は春です。\n", month);

19 break;

20 case 6:

21 case 7:

22 case 8:

23 printf("%d月は夏です。\n", month);

24 break;

25 case 9:

26 case 10:

27 case 11:

28 printf("%d月は秋です。\n", month);

29 break;

30 default:

31 puts("不明な月です。");

32 }

33

34 return 0;

35 }

Made With LATEX + vim 4



柴田健琉 第 10回課題 − 4 演習 3-13 情報処理Ｉ

4.2 実行結果

Made With LATEX + vim 5



柴田健琉 第 10回課題 − 5 簡易電卓 情報処理Ｉ

5 簡易電卓

2 つの実数を入力し、四則演算を指定し、小数点 6 桁で結果を表示する。0 div も考慮する

こと。

5.1 コードリスティング

簡易電卓

1 #include <stdio.h>

2

3 #define ADD 1

4 #define SUB 2

5 #define MUL 3

6 #define DIV 4

7

8 int main(void) {

9 double a, b;

10 int op;

11

12 printf("Input first number: ");

13 scanf("%lf", &a);

14 printf("Input second number: ");

15 scanf("%lf", &b);

16

17 printf("Select Operation:\n"

18 "[1]: Addition\n"

19 "[2]: Subtraction\n"

20 "[3]: Multiplication\n"

21 "[4]: Division\n"

22 "> ");

23 scanf("%d", &op);

24

25 switch (op) {

26 case ADD:

27 printf("ANS: %lf\n", a + b);

28 break;

29 case SUB:

30 printf("ANS: %lf\n", a − b);

31 break;

32 case MUL:

33 printf("ANS: %lf\n", a ∗ b);

34 break;

Made With LATEX + vim 6



柴田健琉 第 10回課題 − 5 簡易電卓 情報処理Ｉ

35 case DIV:

36 if (b == 0.0) {

37 puts("Zero Division");

38 return 1;

39 }

40 printf("ANS: %lf\n", a / b);

41 break;

42 default:

43 puts("Undefined Operation");

44 return 1;

45 }

46

47 return 0;

48 }

5.2 実行結果

Made With LATEX + vim 7



柴田健琉 第 10回課題 − 5 簡易電卓 情報処理Ｉ

Made With LATEX + vim 8



柴田健琉 第 10回課題 − A 付録 情報処理Ｉ

A 付録

A.1 Deep Dive - ifと switchの根本的な違い

初学者は if文と switch文の使い分けで困まる時があるようだ。前述したとおり、どちらも

条件分岐を行うことができる。

しかし、2つには文法以外に明確な違いがある。それは、switch文のほうが「圧倒的」に

処理速度が速いというところである。まず、その処理速度の違いを見てみる。

以下の Pythonスクリプトで 10万個の条件文を含む Cソースコードを生成する：

if文 10万個

1 with open("./ifs.c", mode='w') as file:

2 num = 100000

3 file.write("int comp(int x) {\n    if (x == 0) {\n        return 

0;\n    } ")

4 for i in range(1,num−1):

5 s = f"else if (x == {i}) {{\n        return {i};\n    }} "

6 file.write(s)

7 file.write(f"else {{\n        return {num−1};\n    }}\n}}")

8 file.write(f"\n\nint main(void) {{\n    for (int i = 0; i < {num};

 i++) {{        \n        comp(i);\n    }}\n    return 0;\n}}\n")

switch文 10万個

1 with open("./switch−case.c", mode='w') as file:

2 num = 100000

3 file.write("int comp(int x) {\n    switch (x) {\n")

4 for i in range(num):

5 s = f"        case {i}: return {i};\n"

6 file.write(s)

7 file.write("    }\n}")

8 file.write(f"\n\nint main(void) {{\n    for (int i = 0; i < {num};

 i++) {{\n        comp(i);\n    }}\n    return 0;\n}}\n")

これらを実行し、Cソースコードを生成する：

1 $ python gen−if.py

2 $ python gen−switch.py

Made With LATEX + vim 9



柴田健琉 第 10回課題 − A 付録 情報処理Ｉ

以下が生成されたソースコードの一部始終：

if文 10万個のソースコード

1 int comp(int x) {

2 if (x == 0) {

3 return 0;

4 } else if (x == 1) {

5 return 1;

6 } else if (x == 2) {

7 return 2;

8 } else if (x == 3) {

199996 } else if (x == 99997) {

199997 return 99997;

199998 } else if (x == 99998) {

199999 return 99998;

200000 } else {

200001 return 99999;

200002 }

200003 }

200004

200005 int main(void) {

200006 for (int i = 0; i < 100000; i++) {

200007 comp(i);

200008 }

200009 return 0;

200010 }

switch文 10万個のソースコード

1 int comp(int x) {

2 switch (x) {

3 case 0: return 0;

4 case 1: return 1;

5 case 2: return 2;

6 case 3: return 3;

7 case 4: return 4;

8 case 5: return 5;

99998 case 99995: return 99995;

99999 case 99996: return 99996;

100000 case 99997: return 99997;

100001 case 99998: return 99998;

100002 case 99999: return 99999;

100003 }

100004 }

Made With LATEX + vim 10



柴田健琉 第 10回課題 − A 付録 情報処理Ｉ

100005

100006 int main(void) {

100007 for (int i = 0; i < 100000; i++) {

100008 comp(i);

100009 }

100010 return 0;

100011 }

1 // 検証に影響する最適化を無効にしてコンパイルする

2 $ gcc −O0 ifs.c −o ifs

3 $ gcc −O0 switch−case.c −o switch−case

生成物をタイマに通して実行する：

1 $ time ./ifs

2

3 real 0m59.045s

4 user 0m58.444s

5 sys 0m0.001s

6

7 $ time ./switch−case

8

9 real 0m0.006s

10 user 0m0.004s

11 sys 0m0.002s

実行結果から switch文の方が if文の約 9840倍も高速であると分かる。

では、なぜ switch文の方が速いのか。それは、比較演算の数にある。

if 文は記述した数と同じ数の比較演算が使われている。一方、switch 文は比較に関する演

算は一度しか行われない。

それぞれのバイナリを Intel記法 [1]で逆アセンブルする：

1 $ objdump −Mintel −d ifs

2 $ objdump −Mintel −d switch−case

if文 10万個の comp関数の逆アセンブル (抜粋)

97 0000000000401106 <comp>:

98 401106: 55 push rbp

99 401107: 48 89 e5 mov rbp,rsp

100 40110a: 89 7d fc mov DWORD PTR [rbp−0x4

],edi

101 40110d: 83 7d fc 00 cmp DWORD PTR [rbp−0x4

],0x0

Made With LATEX + vim 11



柴田健琉 第 10回課題 − A 付録 情報処理Ｉ

102 401111: 75 0a jne 40111d <comp+0x17>

103 401113: b8 00 00 00 00 mov eax,0x0

104 401118: e9 2a fc 1c 00 jmp 5d0d47 <comp+0

x1cfc41>

105 40111d: 83 7d fc 01 cmp DWORD PTR [rbp−0x4

],0x1

106 401121: 75 0a jne 40112d <comp+0x27>

107 401123: b8 01 00 00 00 mov eax,0x1

108 401128: e9 1a fc 1c 00 jmp 5d0d47 <comp+0

x1cfc41>

109 40112d: 83 7d fc 02 cmp DWORD PTR [rbp−0x4

],0x2

110 401131: 75 0a jne 40113d <comp+0x37>

111 401133: b8 02 00 00 00 mov eax,0x2

112 401138: e9 0a fc 1c 00 jmp 5d0d47 <comp+0

x1cfc41>

400089 5d0d22: 81 7d fc 9d 86 01 00 cmp DWORD PTR [rbp−0x4

],0x1869d

400090 5d0d29: 75 07 jne 5d0d32 <comp+0

x1cfc2c>

400091 5d0d2b: b8 9d 86 01 00 mov eax,0x1869d

400092 5d0d30: eb 15 jmp 5d0d47 <comp+0

x1cfc41>

400093 5d0d32: 81 7d fc 9e 86 01 00 cmp DWORD PTR [rbp−0x4

],0x1869e

400094 5d0d39: 75 07 jne 5d0d42 <comp+0

x1cfc3c>

400095 5d0d3b: b8 9e 86 01 00 mov eax,0x1869e

400096 5d0d40: eb 05 jmp 5d0d47 <comp+0

x1cfc41>

400097 5d0d42: b8 9f 86 01 00 mov eax,0x1869f

400098 5d0d47: 5d pop rbp

400099 5d0d48: 31 ff xor edi,edi

400100 5d0d4a: c3 ret

switch文 10万個の comp関数の逆アセンブル (抜粋)

97 0000000000401106 <comp>:

98 401106: 55 push rbp

99 401107: 48 89 e5 mov rbp,rsp

100 40110a: 89 7d fc mov DWORD PTR [rbp−0x4

],edi

101 40110d: 81 7d fc 9f 86 01 00 cmp DWORD PTR [rbp−0x4

],0x1869f

Made With LATEX + vim 12



柴田健琉 第 10回課題 − A 付録 情報処理Ｉ

102 401114: 0f 87 2a 42 0f 00 ja 4f5344 <comp+0

xf423e>

103 40111a: 8b 45 fc mov eax,DWORD PTR [rbp

−0x4]

104 40111d: 48 8d 14 85 00 00 00 lea rdx,[rax∗4+0x0]

105 401124: 00

106 401125: 48 8d 05 d8 4e 0f 00 lea rax,[rip+0xf4ed8]

# 4f6004 <_IO_stdin_used+0x4>

107 40112c: 8b 04 02 mov eax,DWORD PTR [rdx+

rax∗1]

108 40112f: 48 98 cdqe

109 401131: 48 8d 15 cc 4e 0f 00 lea rdx,[rip+0xf4ecc]

# 4f6004 <_IO_stdin_used+0x4>

110 401138: 48 01 d0 add rax,rdx

111 40113b: ff e0 jmp rax

112 40113d: b8 00 00 00 00 mov eax,0x0

113 401142: e9 fd 41 0f 00 jmp 4f5344 <comp+0

xf423e>

114 401147: b8 01 00 00 00 mov eax,0x1

115 40114c: e9 f3 41 0f 00 jmp 4f5344 <comp+0

xf423e>

116 401151: b8 02 00 00 00 mov eax,0x2

117 401156: e9 e9 41 0f 00 jmp 4f5344 <comp+0

xf423e>

200106 4f532f: b8 9d 86 01 00 mov eax,0x1869d

200107 4f5334: eb 0e jmp 4f5344 <comp+0

xf423e>

200108 4f5336: b8 9e 86 01 00 mov eax,0x1869e

200109 4f533b: eb 07 jmp 4f5344 <comp+0

xf423e>

200110 4f533d: b8 9f 86 01 00 mov eax,0x1869f

200111 4f5342: eb 00 jmp 4f5344 <comp+0

xf423e>

200112 4f5344: 5d pop rbp

200113 4f5345: 31 d2 xor edx,edx

200114 4f5347: 31 ff xor edi,edi

200115 4f5349: c3 ret

200116

if文では cmp、jne、mov、jmpが並んでおり、上から順に値を比較していき、等価が確認さ

れたらアドレス 0x5d0d47 に飛び関数から抜け出る。この時、値が大きいと関数の深部まで進

めないと等価が確認されないので時間がかかる。言い換えれば比較回数は引数の値に比例する

といえる (O(n))。

Made With LATEX + vim 13



柴田健琉 第 10回課題 − A 付録 情報処理Ｉ

一方 switch文では、cmpと jneのような比較命令は関数の始め以外全く見あたらない。

ここで、関数の始めの 10数個の命令を見ると、4行目では 16進数 0x1869f(99999)とスタッ
ク上にロードされた引数を比較している。次の ja 命令では前行の結果に応じて関数の終わり付

近のアドレス 0x4f5344 へ飛ぶ。この命令は「○○以上であるか」を検証するので、この場合

は等価検証する値の範囲である 0〜99999に引数が含まれているかを検証し、そうでなければそ

の時点で関数から抜け出る処理を行っている。

13 行目まではアドレスに関する算術を行っている。rdx レジスタには引数の 4 倍の値を代

入し、rax レジスタには 0x4f6004 というマジックナンバーをロードする。このマジックナン

バーは整数型配列のアドレスとなっている。この配列は更にはコンパイル時に計算されたマ

ジックナンバーがリトルエンディアンで格納されてる。

次に 32 ビットの eax レジスタに rdx レジスタと rax レジスタの和が示めすアドレスが指し

ている値を代入している。つまり、引数をインデックスとし、それに 32 ビット整数型のサイズ

である 4バイトを掛け、配列のアドレスに足すことで配列にアクセスしている。例として引数が

2の時、アドレスは 0x4f6004+ 0x4 ∗ 0x2 = 0x4f600cとなり、そこから 4バイト分を読むと

4db1f0ffとなり、リトルエンディアンとして変換すると 0xfff0b14dとなる。

cdqe 命令は eax レジスタをサイズが倍の rax レジスタに符号拡張している。この時

rax レジスタには負の値が入っている。引数が 2 の時、0xfff0b14d を符号拡張すると

0xfffffffffff0b14dとなり、この数の 2の補数で負の数と解釈すると-0xf4eb3となる。

rdxレジスタに 0x4f6004を再びロードし、raxレジスタに rdxレジスタの値を加算する。

引数が 2の場合、-0xf4eb3 + 0x4f6004 = 0x401151となる。

この後 rax レジスタに代入されているアドレスに飛ぶが、この時のアドレスは case ラベル

で指定した処理に対応している。

これはハッシュマップに似たもので、どんな値でも処理速度は変化することはない (O(1))。
この魔法のような演算のおかげで、switch 文は比較せずとも分岐を行うことができ、

switch文で扱える値の型が整数型なのも納得いくだろう。

結局 if文と switch文どちらを使うべきかは分岐の数と実行環境による。

分岐の数が少なく、処理速度はあまり求められない場合は if 文、膨大な分岐を必要とし、か

つ処理速度に制限がある場合は switch文が有用である。

Made With LATEX + vim 14



柴田健琉 第 10回課題 −参考文献 情報処理Ｉ

参考文献

[1]Intel Corporation. Intel 64 and IA-32 Architectures Software Developer’s Manual. 03/2025.

url: https://software.intel.com/en-us/download/intel-64-and-ia-32-architectures-sdm-

combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4 (visited on 06/24/2025).

[2]cppreference. switch statement. 01/2018. url: https://en.cppreference.com/w/c/language/

switch.html (visited on 06/19/2025).

Last Compiled(UN*X Time): 1750768541

Made With LATEX + vim 15

https://software.intel.com/en-us/download/intel-64-and-ia-32-architectures-sdm-combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4
https://software.intel.com/en-us/download/intel-64-and-ia-32-architectures-sdm-combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4
https://en.cppreference.com/w/c/language/switch.html
https://en.cppreference.com/w/c/language/switch.html

	はじめに
	実行環境

	今回の構文
	switch文

	演習 3-12
	コードリスティング
	実行結果

	演習 3-13
	コードリスティング
	実行結果

	簡易電卓
	コードリスティング
	実行結果

	付録
	Deep Dive - if と switch の根本的な違い

	参考文献

