
岐阜工業高等専門学校

第 3回課題

電子制御工学科: 情報処理Ｉ

担当教員：岡崎憲一

柴田健琉 (15(2年生))

令和 7年 04月 30日
Made with LATEX + vim



柴田健琉 第 3回課題 −目次 情報処理Ｉ

目次

1 はじめに・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 1

1.1 実行環境・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 1

2 今回の構文 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 1

2.1 scanf関数 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 1

3 演習 1ー 5・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 2

3.1 コードリスティング ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 2

3.2 実行結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 2

4 演習 1ー 6・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 3

4.1 コードリスティング ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 3

4.2 実行結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 3

5 演習 1ー 8・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 4

5.1 コードリスティング ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 4

5.2 実行結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 4

6 演習 1ー 9・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 5

6.1 コードリスティング ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 5

6.2 実行結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 5

7 考察：List 1-11・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 6

7.1 コードリスティング ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 6

7.2 実行結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 6

7.3 考察・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 6

A 付録・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 7

A.1 Code Hardening -バッファーオーバーフロー対策 scanf編・・・・・・・・・・・・・・・・・ 7

Made With LATEX + vim i



柴田健琉 第 3回課題 − 2 今回の構文 情報処理Ｉ

1 はじめに

1.1 実行環境

この課題のプログラムは以下の環境で動作することが確認されている：

• OS: Arch Linux

• CPUアーキテクチャ: x86_64

• Cコンパイラ: gcc (GCC) 14.2.1 20250207

• Cコンパイラフラグ: -Wall <ソースコード名> -o <プログラム名>

2 今回の構文

2.1 scanf関数

scanf関数は標準入力から文字列を読み取り、指定された書式に沿って解釈し、解釈結果の値を指定さ

れた場所に保存する。ここでいう場所とは変数のアドレスのことである。書式は printf 関数と同じもの

である。[1]

scanf関数

1 scanf("<書式>", <変数1へのアドレス>, <変数2へのアドレス>, ...);

コラム：標準入出力関数の戻り値� �
標準入出力関数には void型を返す関数はほとんど定義されていない。

表 1：主な標準入出力関数の戻り値 [4]

関数 型 概要

scanf系 int 正常に読み込まれた変数の数、0または EOF定数はエラーとなる

printf系 int バッファーやストリームに書き込まれた文字の数、

負の値はエラーとなる

setbuf, rewind,

clearerr, perror

void これらの関数のみ値を返さない、

エラーになり得る処理ではないから� �

Made With LATEX + vim 1



柴田健琉 第 3回課題 − 3 演習 1ー 5 情報処理Ｉ

3 演習 1ー 5

プロンプトから読み込んだ整数値に 13を加えた値を表示するプログラム。

3.1 コードリスティング

演習 1ー 5

1 #include <stdio.h>

2

3 int main(void) {

4 int x = 0;

5

6 printf("Input integer: x = ");

7 scanf("%d", &x);

8

9 printf("Result: x + 13 = %d\n", x + 13);

10

11 return 0;

12 }

3.2 実行結果

Made With LATEX + vim 2



柴田健琉 第 3回課題 − 4 演習 1ー 6 情報処理Ｉ

4 演習 1ー 6

プロンプトから読み込んだ整数値から 7を減じた値を表示するプログラム。

4.1 コードリスティング

演習 1ー 6

1 #include <stdio.h>

2

3 int main(void) {

4 int x = 0;

5

6 printf("Input integer: x = ");

7 scanf("%d", &x);

8

9 printf("Result: x − 7 = %d\n", x − 7);

10

11 return 0;

12 }

4.2 実行結果

Made With LATEX + vim 3



柴田健琉 第 3回課題 − 5 演習 1ー 8 情報処理Ｉ

5 演習 1ー 8

プロンプトから読み込んだ 2つの整数値の積を表示するプログラム。

5.1 コードリスティング

演習 1ー 8

1 #include <stdio.h>

2

3 int main(void) {

4 int n1;

5 int n2;

6

7 printf("Input two integers.\n");

8 printf("Integer n1: ");

9 scanf("%d", &n1);

10 printf("Integer n2: ");

11 scanf("%d", &n2);

12

13 printf("The product of two integers is %d.", n1 ∗ n2);

14

15 return 0;

16 }

5.2 実行結果

Made With LATEX + vim 4



柴田健琉 第 3回課題 − 6 演習 1ー 9 情報処理Ｉ

6 演習 1ー 9

プロンプトから読み込んだ 3つの整数値の和を表示するプログラム。

6.1 コードリスティング

演習 1ー 9

1 #include <stdio.h>

2

3 int main(void) {

4 int n1;

5 int n2;

6 int n3;

7

8 printf("Input three integers.\n");

9 printf("Integer n1: ");

10 scanf("%d", &n1);

11 printf("Integer n2: ");

12 scanf("%d", &n2);

13 printf("Integer n3: ");

14 scanf("%d", &n3);

15

16 printf("The sum of three integers is %d.", n1 + n2 + n3);

17

18 return 0;

19 }

6.2 実行結果

Made With LATEX + vim 5



柴田健琉 第 3回課題 − 7 考察：LIST 1-11 情報処理Ｉ

7 考察：List 1-11

List 1-11にて、入力に 3.14や 0.5などの小数を入力すると出力はどうなるか。

7.1 コードリスティング

考察：List 1-11

1 #include <stdio.h>

2

3 int main(void) {

4 int no;

5

6 printf("Input an integer: ");

7 scanf("%d", &no);

8

9 printf("You inputed %d.\n", no);

10

11 return 0;

12 }

7.2 実行結果

7.3 考察

入力した全ての小数が繰り下げられている。%d は整数しか表示できず、小数の場合は小数部を切り捨

て、整数部のみ表示している。小数を表示したい場合は printf関数と scanf関数両方の書式を%fにす

る必要がある。

Made With LATEX + vim 6



柴田健琉 第 3回課題 − A 付録 情報処理Ｉ

A 付録

A.1 Code Hardening -バッファーオーバーフロー対策 scanf編

C言語は比較的自由な言語だ。しかし自由には責任が伴う。

初学者からベテラン Cプログラマーが誰でも 1度はやらかしてしまう間違いとして文字列の読み込みに

よるバッファーオーバーフローがある。

バッファーオーバーフローは静的・動的に割り当てられたメモリー領域外に書き込むことで発生する。

今回の演習課題は整数値を読み込んだが、バッファーオーバフローは起こらないが、整数値オーバーフ

ロー・アンダーフローという別の問題が起こる。しかし、このバグによる影響は比較的小さい。なぜな

ら、これらの整数は関数のスタック上の変数として決まったサイズでメモリーに割り当てられており、領

域外への値の書き込みがないからである。

しかし、ユーザーが入力する文字列となると話が違ってくる。バッファーに過剰な量のデータが流入す

ることバッファーオーバーフローが起こり、最悪の場合、バッファー外のデータを侵食・書き換えてしま

い、プログラムが誤動作する。[3] 静的に割り当てられた変数のバッファーオーバーフローは対処が容

易であるが、実行するまでサイズが不明な場合が多い動的に割り当てられた変数の対策はその限りでは

ない。

文字列・配列への範囲外読み書きはユーザーやネットワーク要求からの入力を扱う際にはより注意する

必要がある。開発者がすべてのユーザーが指示に従うと思い込むのは、はっきり言って愚かである。プロ

グラムはすべてメモリ安全性を第一に考えて書かれるべきである。

実際、このような脆弱性がシステムの全権を取得できてしまう程の問題を簡単なエラーによって引き

起こされる場合がある。例えば、「CVE-2021-3156」では Linux 等での非管理者ユーザーが管理者として

ファイル編集できるようにする「sudoedit」コマンドでは、配列のサイズが 1つずれただけでバッファー

オーバーフローを発生させ、認証なしで管理者権限が付与されてしまうバグが存在した。[5]

Pythonや Javaなどの多くの高級言語は配列のサイズを超える場所への値の代入はエラーとなりコンパ

イル時やプログラム実行中に停止するように設計されている。しかし C 言語はそのような設計はプログラ

ム実行中には施されていない。-Wallフラグを使用しても警告を出すだけで止めることはない。1）

高級言語の文字列は本体の文字列と共にその長さが記録されているが、C 言語はその長さは記録され

ず、代わりに終端文字が文字列の終わりを示めす。scanfや getsは終端文字を検出するまで読み込みを

続ける。裏を返せば、終端文字を見つける前にバッファーが溢れているときでも、範囲外への書き込みを

続けてしまうということにも繋がる。

次の例を考える：企業のシステムにて、ユーザーがパスワード (文字列)を入力し、正しければ社員デー

タベースを操作するサブルーチーンに変移する。パスワードの入力を司る処理とパスワードを照合する処

理は個別にサブルーチーンがあるものとする。ユーザーが入力したパスワードは動的に確保した 64 バイ

トのバッファー領域に書き込まれる。

1） gcc など最近のコンパイラでコンパイルされたプログラムはスタックカナリアと呼ばれる一昔の炭鉱夫が一酸化炭素検出のため

に使われた鳥のカナリアの様にバッファーオーバーフローなどによって関数スタックが破壊された際にプログラムを強制終了させ

るコードを追加する機能が常に有効化されている物が存在する。なおこの機能はヒープ (動的確保されたメモリ領域) には適応さ

れない。[2]

Made With LATEX + vim 7



柴田健琉 第 3回課題 − A 付録 情報処理Ｉ

対策されていないシステムの例

1 #include <stdio.h>

2 #include <stdlib.h>

3

4 #define PASSLEN 65

5

6 void databaseManagement();

7

8 int checkPassword(char∗ passwd) {

9 char passwd[PASSLEN];

10

11 scanf("%s", passwd);

12

13 return isCorrectPassword(passwd);

14 }

15

16 int main(void) {

17 printf("Database Login\nPassword: ");

18

19 if (checkPassword())

20 databaseManagement();

21

22 return 0;

23 }

この時、システムを悪用したいと企てるハッカーが 65 バイト以上の文字列を渡し、うまくバッファー

オーバーフローを引き起こさせると、パスワードの入力を司るサブルーチーンの戻りアドレスが書き換え

られ、照合サブルーチーンを介さずに直接データベース管理サブルーチーンを実行させる。

scanf関数での対策はいたってシンプルである：書式を"%<バッファーサイズ - 1>s"に変更するだけ

である。2）これによって、読み出す文字数を制限し、バッファーオーバーフローを防ぐことができる。

もう一つの方法は C11 規格から追加された scanf_s 関数を代わりに使用することである。scanf_s

関数はオリジナルの scanf 関数に新たにバッファーのサイズを受け付る引数を最後尾に追加し、エラー

チェックをより厳密にしたもので、これにより前述の方法と併用しつつ、明示的にバッファーサイズを指

定することができる。[1]

scanf関数の対策例

1 // scanf("%s", passwd);

2 scanf("64%s", passwd);

3 passwd[PASSLEN−1] = '\0'; // 終端文字の存在を保証する

4 // C11規格以降のみ

5 scanf_s("64%s", passwd, PASSLEN);

2） この-1で終端文字が入るスペースを残す。

Made With LATEX + vim 8



柴田健琉 第 3回課題 − REFERENCES 情報処理Ｉ

References

[1]Eendy et al. scanf, fscanf, sscanf, scanf_s, fscanf_s, sscanf_s. 07/2022. url: https://en.cppreference.

com/w/c/io/fscanf (visited on 04/24/2025).

[2]Low Level.what ever happend to buffer overflows? 03/2023. url: https://www.youtube.com/watch?

v=z6gdQt8mjn4 (visited on 04/27/2025).

[3]Low Level. why do hackers love strings? 11/2022. url: https : / /www . youtube . com /watch ? v =

fjMrDDj47E8 (visited on 04/27/2025).

[4]Space Mission. Standard library header <stdio.h>. 02/2025. url: https://en.cppreference.com/w/c/

header/stdio (visited on 04/27/2025).

[5]CVE Program. CVE Record: CVE-2021-3156. CVE Program. 09/2024. url: https : / /www . cve . org /

CVERecord?id=CVE-2021-3156 (visited on 04/30/2025).

Last Compiled(UN*X Time): 1745945094

Made With LATEX + vim 9

https://en.cppreference.com/w/c/io/fscanf
https://en.cppreference.com/w/c/io/fscanf
https://www.youtube.com/watch?v=z6gdQt8mjn4
https://www.youtube.com/watch?v=z6gdQt8mjn4
https://www.youtube.com/watch?v=fjMrDDj47E8
https://www.youtube.com/watch?v=fjMrDDj47E8
https://en.cppreference.com/w/c/header/stdio
https://en.cppreference.com/w/c/header/stdio
https://www.cve.org/CVERecord?id=CVE-2021-3156
https://www.cve.org/CVERecord?id=CVE-2021-3156

	はじめに
	実行環境

	今回の構文
	scanf関数

	演習1ー5
	コードリスティング
	実行結果

	演習1ー6
	コードリスティング
	実行結果

	演習1ー8
	コードリスティング
	実行結果

	演習1ー9
	コードリスティング
	実行結果

	考察：List 1-11
	コードリスティング
	実行結果
	考察

	付録
	Code Hardening - バッファーオーバーフロー対策 scanf編


